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Abstract 

The Probabilistic RoadMap(PRM) method, one of the 
popular path planning schemes for a manipulator, can find a 
collision-free path by connecting the start and goal poses 
through the roadmap constructed by drawing random nodes 
in the free configuration space. The PRM shows robust 
performance for static environments, but rather poor 
performance for the dynamic environments. On the other 
hand, reinforcement learning, one of the behavior-based 
control techniques, can cope with uncertainties in the 
environment. The agent of reinforcement learning can 
establish a policy that maximizes the sum of rewards by 
selecting the optimal actions in any state through iterative 
interactions with the environment. In this paper, we propose 
an efficient real-time path planning by combining the PRM 
and reinforcement learning to cope with uncertain dynamic 
environments and similar environments. A series of 
experiments show that the hybrid path planner can generate 
the collision-free path even for the dynamic environment in 
which the objects block the pre-planned global path. It is also 
shown that the hybrid path planner can adapt to the similar 
environments learned previously without much additional 
learning. 

1 Introduction 

A service robot is a human-oriented robot which can provide 
various services such as education, support for labor and housework, 
entertainment and so on by interacting with humans. The arm of a 
service robot, which provides various services to humans as a 
means of manipulation, is more likely to collide with static 
obstacles as well as dynamic obstacles including humans than any 
other parts of the robot.  

Path planning for a robot manipulator means generation of an 
optimized global path which can avoid collision with static or 
dynamic obstacles in a given workspace [1]. Path planning is 
conducted either in real workspace or in configuration space 

composed of a manipulator and obstacles. In the former case, it is 
advantageous that path planning is performed easily and directly 
without other specified mapping processes. However, singularity 
problems may occur because multiple solutions can exist for the 
given configuration of a manipulator. On the other hand, if 
configuration space is used for path planning, the environment 
information on the collision region and collision-free region can be 
obtained since the joint angles at which the manipulator collides 
with obstacles can be found. Obstacles having a uniform shape in 
workspace are usually deformed to an unpredictable shape by the 
configuration space mapping process. Therefore, it is very difficult 
for the path planner to cope with dynamic environments without 
information on accurate pose and configuration for dynamic 
obstacles. 

Several schemes such as a roadmap approach, a cell decomposition 
method, a potential field method have been proposed to generate 
the optimal global path in a given configuration space [2]. Among 
them, the PRM (probability roadmap) method based on the 
roadmap approach can be applied to not only complex static 
environments but also a manipulator with high degrees of freedom 
[3]. Furthermore, it can be easily implemented because of its simple 
structure. But the PRM requires accurate information on the 
environment, which is difficult to obtain in practical situations, 
especially in dynamic environments.  

Reinforcement learning (RL) has been used to handle the uncertain 
situations. In this paper, therefore, we propose an efficient real-time 
hybrid path planning scheme by combining the PRM and 
reinforcement learning to cope with uncertain dynamic 
environments. This hybrid path planner can be applied effectively to 
the environments similar to the previously learned environments 
without additional learning.  

This paper is organized as follows. Section 2 gives an overview of 
configuration space, PRM, and reinforcement learning. Section 3 
proposes a hybrid path planner based on the PRM and RL. The 
experimental results for both static and dynamic environments are 
discussed in this section. Section 4 is concerned with adaptability to 

The 6th Asian Control
July 18-21, 2006
Bali, Indonesia

ISBN 979-15017-0 994 © 2006 ASCC



similar environments and a balance between exploration and 
exploitation. Finally, Section 5 presents conclusions. 

2 PRM and Reinforcement Learning 

A configuration of an arbitrary object is a specification of its pose 
(i.e., position and orientation) with respect to a fixed reference 
frame. The configuration space (C-space for short) is the space that 
is composed of all possible configurations of the object [2]. It is 
usually described in the Cartesian coordinate system whose axis 
represents each degree of freedom of a manipulator. Therefore, an 
arbitrary point in the C-space corresponds to one specific 
configuration of a manipulator and a curve connecting two points in 
the configuration space describes the path of a manipulator. 

Path planning of a manipulator based on configuration space shows 
robust performance for static environments. In the static 
environment for which full prior information is known, a global 
collision-free path can be planned for the given start and goal poses. 
Figure 1 shows the C-space determined by a simple 2-link 
manipulator and static workspace with various static obstacles.  
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Fig. 1. 2-link manipulator in workspace (left) and its configuration 
space (right). 

The PRM (probabilistic roadmap) planner consists of a 
preprocessing phase and a query phase. The preprocessing phase 
draws collision-free nodes called milestones randomly in the free C-
space and constructs the roadmap by connecting milestones with 
directional two-way curves. The query phase generates an 
optimized global collision-free path by connecting the start and goal 
poses to two nodes of the roadmap. As an example, if the PRM 
planner is applied to the configuration space shown in Fig. 1, a 
global path shown in Fig. 2 can be obtained through the 
preprocessing and query phases. 
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Fig. 2. PRM planner: (a) preprocessing phase, and (b) query phase. 

 
Reinforcement learning (RL) was proposed by Minsky [4][5]. As 
shown in Fig. 3, the RL agent which performs actual learning 
interacts continuously with an environment outside the agent. The 
agent performs an action at in some state st and receives a real-
valued reward rt from the environment. Through this sequence, the 
agent learns a control policy π, which can help the agent to select 
the optimal action at any given state by itself. 
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Fig. 3. Standard model of reinforcement learning. 
 
Several conventional methods have been suggested for actual 
embodiment of reinforcement learning and they are classified into 
temporal difference learning method, dynamic programming, 
Monte-Carlo method [6]. In this paper, we use Q-learning (Quality 
learning) which is based on the temporal difference learning 
method that combines advantages of the dynamic programming 
and Monte-Carlo method. Also, Q-learning is suitable for 
incremental learning process. 

3 Hybrid PRM-RL Path Planner 

In this paper, the hybrid path planning scheme based on PRM and 
RL (reinforcement learning) is proposed to improve the adaptability 
of a PRM planner to dynamic and similar environments. This 
hybrid path planner is illustrated in Fig. 4. 
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Fig. 4. Hybrid path planner based on PRM and RL. 
 
The image processing system transfers the state information of a 
static or dynamic environment to the RL agent. In case of a static 
environment, the poses of static obstacles in workspace are 
recognized by extracting their color and edge information. Then the 
image processing system checks whether the obstacle information 
matches the previously given state information of the static 
environment. In case of a dynamic environment, the difference 
image between two successive images is used to detect the dynamic 
obstacle as shown in Fig. 5.  
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Fig. 5. Detection of dynamic obstacle based on difference image: 

(a) image at time t, (b) image at time t+Δ t, and (c) detected 
obstacle during Δ t. 

 
The C-space mapping process extracts a C-space from a given 
workspace. The workspace associated with a manipulator with high 
degrees of freedom is usually mapped into a high-dimensional C-
space, which is difficult to visualize and causes computational 
burden due to the long mapping process. To solve this problem, a 
dilation operation, quantization of high-dimensional C-space, and 
the modified slice projection based on feature extraction of obstacle 
are used in the C-space mapping process.  

For a dilation operation, we assume that the manipulator consists of 
several links with an identical circular cross section but different 
length. Then the dilation operation is performed by expanding all 
obstacles in the workspace by an amount equal to the radius of a 
link as shown in Fig. 6. As a result of the dilation operation, the 
manipulator with an arbitrary shape can be easily mapped into the 
C-space. Also, the avoidance of collision between a manipulator 
and obstacles can be improved by increasing ΔT during the dilation 
process. 
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Fig. 6. Expansion of obstacles using dilation operation. 
 
A 6 DOF manipulator usually consists of the positioning structure 
(joints 1, 2, 3) to control the position of an end-effector and the 
orienting structure (joints 4, 5, 6) to control its orientation. A 
mapping process into the 6 dimensional C-space requires long 
computation time. Furthermore, the orienting structure has little 
effect on collision in comparison with the positioning structure. 
Therefore, it is assumed that joints 4, 5, 6 are attached to joint 3 and 
thus the 6 dimensional C-space is quantized into 3 dimensional C-
space in this research.  

Figure 7 illustrates the conventional slice projection method. 
Suppose an obstacle is sliced at intervals of Δθ between θ1a and θ1b 
in a given workspace. Since an obstacle has a different cross 
sectional shape with respect to θ1, the C-space mapping process has 
to be conducted repeatedly to accurately describe the shape, thus 
leading to computational burden. To cope with this problem, a 
modified slice projection method is proposed in this research. An 
angle θ1′ ought to be found at which the sectional area of an 

obstacle becomes maximum between θ1a and θ1b. Then the obstacle 
is assumed to have the same cross sectional area with the one at θ1′ 
for all θ1 between θ1a and θ1b. By applying the modified slice 
projection method, the obstacles in workspace are deformed in 
configuration space. This deformed obstacle tends to overestimate 
the obstacle space, but it is advantageous in light of obstacle 
avoidance.  
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Fig. 7. (a) Conventional slice projection method, and (b) modified 

slice projection method based on feature extraction of 
obstacle. 

 
The PRM consists of a preprocessing phase and a query phase. In 
this hybrid path planner, however, only a preprocessing phase of the 
PRM is employed to construct a roadmap in the C-space from a 
given workspace. This roadmap is used as state information for 
learning performed by the RL agent. 

In applying the reinforcement learning (RL) method, the state in an 
environment is defined as the manipulator configuration given by 
joint variables θ1 and θ2. For example, if the current configuration is 
given by θ1 = θ1′ and θ2 = θ2′, sw (θ1′, θ2′) and sc (θ1′, θ2′) represent the 
state variable in the workspace and C-space, respectively. 
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Fig. 8. Definition of state variables for RL. 
 
The action variable which can be chosen by the agent at any 
arbitrary state sc (θ1, θ2) is defined as a set of joint variables which 
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causes the manipulator to move from the current milestone to 
another on the roadmap which is constructed by the preprocessing 
phase of the PRM. For example, if the current state is sc (θ1′, θ2′), 
then the RL agent can take either the action variable ac(θ1a, θ2a) or 
ac(θ1b, θ2b) because the states sc(θ1a, θ2a) or sc(θ1b, θ2b) are only two 
state accessible from the current state.  
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Fig. 9. Definition of the action variables for reinforcement learning. 
 
The reward of RL is a numerical evaluation for an action selected 
by the agent in the current state. As shown in Fig. 10, the agent 
receives a numerical reward of rt = R only when the agent generates 
a global collision-free path from the start to the goal pose while 
maintaining the distance to the obstacles greater than the threshold 
distance throughout the path.  
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Fig. 10. Numerical reward during RL for generation of optimized 

global path. 
 
The action-value function Q (st, at) is defined as the numerical value 
which evaluates the future influence by the action at chosen at the 
current state st. In Q-learning, the action-value function is called a 
Q-value, and the purpose of Q-learning is to employ a policy π that 
helps the agent to select an action at which makes the Q-value 
maximum in a given state st [6][7]. In this paper renewal of the Q-
value is performed by the undeterministic reward and action 
method as follows: 
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where α is the learning rate (0 ≤ α ≤ 1) determining the 
convergence rate of learning and γ is the discount rate (0 ≤ γ ≤ 1) 
which decides a relative ratio between the immediate reward at 

current state st and the delayed reward at future state st′. The agent 
performs learning on all local paths which connect each milestone 
on the roadmap to reach the goal pose, because a reward is given to 
the agent only when it reaches the goal pose through the roadmap. 
In this process, the Q-values for the local paths on the roadmap are 
renewed continually by Eq. (1). Figure 11 shows that a portion of 
the learning process performed by the RL agent by Eq. (1) when α 
= 0.5 and γ = 0.5. 
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Fig. 11. Learning trial for a given roadmap by agent’s policy using 

reinforcement. 
 
As shown in the above example, the Q-value continues to increase 
with the increasing number of learning, when the agent performs 
learning for a given environment. If the learning process is 
completed, the learning data are obtained so that different weights 
are given to each local path on the roadmap. Therefore, it is possible 
to generate the optimized global path by combining local paths 
which have the maximum Q-values from the start to the goal pose 
on the roadmap in the static environment as shown in Fig. 12. 
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Fig. 12. Results of reinforcement learning for a given roadmap : (a) 

Q-values, and (b) optimal global path. 
 
As a result of RL, the learning data and the optimal global path are 
generated as shown in Fig. 12. Suppose a dynamic obstacle 
blocking the pre-planned global path is detected at an arbitrary 
milestone during the real manipulation process. In this case, the RL 
agent updates the learning data generated previously by setting all 
Q-values related to that milestone to zero. The agent then 
regenerates another collision-free global path by using the updated 
Q-values. If the agent has collected sufficient learning data for a 
given environment, it can avoid dynamic obstacles in real-time by 
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using the previous learning data without additional learning as 
shown in Fig. 13. 
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Fig. 13. Renewal of learning data: (a) renewal of Q-values, and (b) 

renewal of global path caused by occurrence of dynamic 
obstacle. 

 
To verify the validity of the proposed hybrid PRM-RL path planer, 
various experiments have been conducted for the environment 
shown in Fig. 14. The manipulator used for experiments was 
Samsung FARAMAN AS-1i with 6 DOFs. The stereo camera, 
Videre STH-MDCS2, was installed on the ceiling to model the 
environment and detect dynamic obstacles. This camera is capable 
of providing the range data for each pixel in the image. The C-space 
was extracted from a given workspace by the modified slice 
projection method mentioned before. A total of 210 milestones 
were used to generate the sufficient number of collision-free nodes 
in the extracted C-space. 
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Fig. 14. Constructed environment for first experiment: (a) its 

workspace, and (b) its configuration space. 
 

Fig. 15 shows the collision-free global path which was optimized 
from the learning data obtained by applying reinforcement learning 
to a roadmap constructed in the preprocessing phase of PRM for the 
static environment shown in Fig. 14. It is shown that the proposed 
hybrid PRM-RL path planner can provide smoother path than the 
path planner based on the PRM only.  

As shown in Fig. 16, if a dynamic obstacle blocking any milestone 
on the pre-planned global path during the real manipulation process, 
the hybrid path planner regenerates another global collision-free 
path in real-time by resetting all Q-values to zero which are related 
to that milestone by detecting the positional information of dynamic 
obstacle from the stereo camera. 

1θ

2θ

3θ

 

Fig. 15. Global paths for static environment (Experiment)  
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Fig. 16. Global paths for dynamic environment (Experiment) 
 

4   Hybrid PRM-RL Path Planner 
 
The environments in which a service robot operates tend to vary 
frequently for various reasons. Therefore, it is important that the 
path planner can adapt to the environments only with a small 
number of learning once they are similar to the ones learned 
previously.  

To perform learning for a given environment, the RL agent has to 
collect and analyze various experiments for the current state, the 
action chosen by the agent, the state transition by action selection, 
and the best action maximizing the reward. To achieve this, the 
agent needs a balance between new exploration for a given 
environment and exploitation based on the existing learning data [7]. 
To do this, the reward is given by 
 

)( ir pp
t eeRr −− +⋅=  where  pr + pi = 1        (2) 

 
where pr is the exploration rate defined as the ratio of the number of 
new explorations for a given environment to the total number of 
learning. Likewise, the exploitation rate pi is defined as the ratio of 
the number of exploitations based on the existing learning data to 
the total number of learning. As shown in Fig. 17, the identical 
reward is given independent of exploration or exploitation.  
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Fig. 17. Modified numerical reward for optimization of path 
planning. 

 
Various experiments were conducted to verify the adaptability of 
the hybrid path planner to similar environments. First, the agent 
performed learning 100 times for environment A shown in Fig. 18. 
Next, it performed learning 100 times in order for environments B 
and C which were similar to environment A. Environments B and 
C were changed from A by slightly changing the poses of obstacles.  
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Fig. 18. Three types of environments to investigate adaptability to 
similar environments. 

 
Figure 19 shows the experimental results showing the adaptability 
of the hybrid path planner to similar environments. Whenever the 
agent is given a new environment, it does not know whether the 
environment is a completely new (e.g., environment A) or it is 
similar to one of those which have been learned previously (e.g., 
environment B, C). As the characteristic of the environment is 
found in the decision period in which both exploration and 
exploitation are tried in identical rates, the agent performs 
reinforcement learning in a different way. If a given environment is 
completely new, the hybrid path planner performs learning with 
higher exploration rate than exploitation rate, thus meaning that the 
agent tends to make new attempts continuously for a given 
environment. On the other hand, if a given environment is similar to 
the one learned previously, the agent performs learning with higher 
exploitation rate than exploration rate, thus meaning that it tends to 
use the previous learning data. 

5   Conclusions 

In this paper, we propose the hybrid path planner based on the PRM 
and reinforcement learning to enable the manipulator to cope with 
both static and dynamic environments and to adapt to similar 
environments. From various experiments, the following 
conclusions are drawn:  

1. The hybrid path planner can generate a collision-free optimal 
global path in static environments, provided the environment is 
known in advance.  

2. The hybrid path planner can cope with dynamic environments in 
which an obstacle blocks any milestone on the pre-planned 
global path by regenerating another collision-free global path 
without additional learning.  

3. The hybrid path planner can effectively adapt to the 
environments identical or similar to the ones experienced 
previously by autonomously adjusting a balance between 
exploration and exploitation.  

 

Fig. 19. Optimization of path planning by a balance between 
exploration and exploitation. 
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